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Introduction Methodology

Previous work has shown large variability in cloud microphysics, and hence surface rainfall, depending on meteorological regime. For example, Bringi et al. (2009) showed a  Examine data from the polarimetric S-band NPOL radar and network of surface 2D video disdrometers (2DVD)

difference in convective and stratiform mean drop sizes (D,), as well as differences between the monsoon and break periods in Darwin. Cloud microphysics can also vary * 2DVD and NPOL data were matched for precipitating times over each entire field project, resulting in 9 cases for MC3E and 16 cases for IFloodS. This was done to examine
spatially, temporally, and topographically. Using the extensive datasets collected by recent NASA Ground Validation (GV) field experiments, we examine the environmental if both radar and disdrometer give consistent correlation trends, since the radar samples a much larger area than disdrometer

controls on DSD parameters such as D, and normalized number concentration (N, ) in the hopes of possibly providing information to constrain space- and ground-based radar  Data were divided into convective and stratiform using a 38 dBZ threshold

rainfall retrievals. Our hypothesis is that stronger, more organized convection (through larger CAPE and moderate shear) produces larger maximum updrafts, larger « RUC (MC3E) and RAP (IFloodS) reanalysis points were collected for the point nearest the disdrometers and hourly surface parameters were extracted: CAPE, warm cloud
precipitation ice (graupel and hail) aloft consuming available supercooled water and resulting in larger but fewer drops at the surface. The stratiform regions are enhanced depth (WCD), cloud base height (CBH), temperature (T), dew point (Td)

through increased convergence and strong mesoscale ascent resulting in larger aggregates, stronger bright bands and larger drops at the surface. Herein we examine data * Hourly means of disdrometer and radar data were correlated to environmental parameters using Spearman correlations

from the 2011 Mid-latitude Continental Convective Cloud Experiment (MC3E) and 2013 Iowa Flood Studies (IFloodS). * Apply radar self-consistency (relationship between differential reflectivity (Z,,) and the ratio of specific ditferential phase (K, ) to linear reflectivity (Z,)
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Conclusions

By examining different convective cases occurring in different locations (Oklahoma and Iowa) under different environmental conditions, we can see some variability in DSD and radar self-consistency space. That is, cases with more CAPE, deeper WCD,
ACknOWIedgeme nts higher CBH and warmer surface temperatures tend to result in surface DSDs with larger D, but lower N .. Warm cloud depth was consistently moderately correlated with DSD and radar parameters in both regions. In radar space, these cases are
This work is supported by NASA grants NNX13AG32G, NNX14AHO06G and DOE DE-SC0007016. Thank you to associated with larger convective Z, values and lower K, / Z, ratios. We speculate this is due to larger precipitation ice grown aloft and larger aggregates, which then melt efficiently in deep warm cloud depths. Interestingly, median and maximum Z,,’s
Merhala Thruai, Ali Tokay, Elizabeth Thompson, Brody Fuchs for assistance with data processing and acquisition. ] lare larger over the MC3E region compared to IFloodS, but K, /Z, ratios are lower. Future work will include expanding the analysis to IPHEx and OLYMPEX regions, as well as expanding the radar and disdrometer analysis beyond matched times.




